
ON THE (UN)DECIDABILITY OF A NU-TERM

MIKLÓS MARÓTI

Abstract. We investigate two problems: the natural duality prob-
lem (given a finite algebra P, decide if the quasi-variety generated
by P is dualizable) and the near-unanimity problem (given a fi-
nite algebra, decide if it has a near-unanimity term of finite arity).
These problems are intimately related to each other as described
in [2]. We prove that a partial version of the second problem is un-
decidable. On the other hand, we present results towards proving
the decidability of the general problem.

1. Introduction

General duality theory is capable of describing various well-known
dualities—for example Stone’s and Priestley’s, among others— between
categories of algebras and topological structures. The classes of alge-
bras under consideration are quasi-varieties generated by some finite
algebra P (the class of algebras embeddable into powers of P). By this
theory, not every quasi-variety admits a natural duality. Therefore,
to leverage the power of duality, we need to characterize those finitely
generated quasi-varieties that admit a natural duality. Is this charac-
terization possible? Is it decidable of a finite algebra P whether the
quasi-variety generated by P admits a natural duality? This second
question is known as the natural duality problem.

Currently, we do not know the answer to this problem, but many
expect it to be undecidable. The problem was partially reduced to a
pure algebraic problem in the following way.

Definition 1.1. Let P be an algebra and t(x1, . . . , xn) be a term of P.
We say that t is a near-unanimity term if t(y, . . . , y, xi, y, . . . , y) = y
for all 1 ≤ i ≤ n and xi, y ∈ P .

For brevity, we sometimes write NU-term instead of near-unanimity
term. It was already known (B. Davey [2]) that in the presence of a
near-unanimity term of P, the quasi-variety A generated by P admits

Date: September 3, 2000.
1

2 MIKLÓS MARÓTI

a natural duality. The converse was proved in [3] under the assumption
that A is congruence distributive: if A admits a natural duality and is
congruence distributive then P has a (finitary) near-unanimity term.
This implies that if it is undecidable whether a finite algebra has a near-
unanimity term, then the natural duality problem is also undecidable.
We call the premise of this implication the near-unanimity problem. It
became apparent that we do not know much about the near-unanimity
problem.

In [7] R. McKenzie proved that it is undecidable if a finite algebra
P has a term t that behaves as a near-unanimity term on a fixed two-
element subset of P . The key development presented in this article is
the improvement of this result to a fixed n − 2 element subset where
n = |P |, and the simplification of his elaborate construction. The
basic idea, however, is intact: the use of Minsky machines (which are
equivalent to Turing machines), and the encoding of their computations
in the terms of P. The method used in the proof relies on an absorbing
element as the indicator of defects. This probably prevents the further
improvement of this approach to prove the undecidability of the near-
unanimity problem. However, an improvement to n−1 elements might
be possible, which could be formulated as the undecidability of the
near-unanimity problem for partial algebras (as in [5]).

It is natural to attack the near-unanimity problem from the other
perspective, as well: try to prove that it is decidable. We have tried
the divide-and-conquer approach using Rosenberg’s characterization of
maximal clones. It turns out that in three of the six classes of maximal
clones the problem is decidable. If we restrict ourselves to idempo-
tent algebras then we can further eliminate one of the three remaining
classes. The idempotent case is still not solved, however. The best
result, in this case, is obtained using Á. Szendrei’s characterization of
idempotent strictly simple term minimal algebras [14].

The near-unanimity problem is non-trivial, and intrinsically interest-
ing for algebraists. Maybe its decidability will be proved by topological
methods via the theory of natural dualities.

In the next section we review the framework of natural duality the-
ory. We assume basic knowledge of topology and category theory. The
reader may skip this section if only the near-unanimity problem is in
her interest, or consult [2] and [3] for a detailed discussion of the sub-
ject and for references. In Section 3 we will introduce Minsky machines
and prove their equivalence with Turing machines. The section is self

ON THE (UN)DECIDABILITY OF A NU-TERM 3

contained, assumes only knowledge of the concept of Turing machine.
We prove the undecidability of the near-unanimity problem on an n−2
element subset in Section 4. Only the definition of the Minsky machine
is required. The last section begins with the review of Rosenberg’s the-
orem, and then its application to the near-unanimity problem. Finally,
the case when P is idempotent is considered. This is the only section in
which knowledge of universal algebra is assumed. We refer the reader
to either [1] or [8] for the basic definitions.

I am indebted to R. McKenzie for the invaluable conversations, and
Á. Szendrei and J. Ježek for their useful comments and directions.

2. Natural duality

Duality theory grew out of a few classical special cases; Pontrya-
gin’s duality for abelian groups, Stone’s duality for Boolean algebras
and Priestley’s duality for distributive lattices. Each of these dualities
establishes a connection between a category A of algebras with homo-
morphisms and a category X of topological structures with continuous
structure preserving maps. Surprisingly, in all these cases the class A is
a quasi-variety generated by a single algebra P ∈ A, and X is the class
of closed substructures of powers of a single object P∼ ∈ X . Moreover,

the structures P and P∼ have the same underlying set.

In this section, first we review the general framework of natural du-
ality and present a few examples. Then we jump to the NU-Obstacle
Theorem, which provides the bridge between natural duality and near-
unanimity. One of the consequences of this connection is that undecid-
ability of the near-unanimity problem yields the undecidability of the
natural duality problem.

Let P = 〈P ; F 〉 be a finite, non-trivial algebra, and A = ISP(P)
be the quasi-variety generated by P. The morphisms of A are the
(algebraic) homomorphisms.

Definition 2.1. We say that the structure P∼ = 〈P ; G, H, R, T 〉 is

algebraic over P if the following conditions hold.

(1) The underlying set of P∼ is the same as of P.

(2) G is a set of (total) operations on P such that if g ∈ G is n-ary
then g : Pn → P is a homomorphism. (If n = 0 then this means
that {g} is a subalgebra of P.)

(3) H is a set of partial operations on P (of arity at least 1) such
that if h ∈ H is n-ary then the domain, dom(h), of h is a

4 MIKLÓS MARÓTI

(non-empty) subalgebra of Pn and h : dom(h) → P is a homo-
morphism.

(4) R is a set of finitary relations on P (of arity at least 1) such
that if r ∈ R is n-ary then r is a subalgebra of Pn.

(5) T is the discrete topology on P .

If one wishes to include examples where P is infinite, then we must
assume that T is a compact Hausdorff topology and that each operation
in F is continuous with respect to T . We will not take this route,
however, and must refer the reader to [2] for further information.

To specify the other category X of topological structures we need
the following definitions.

Definition 2.2. Let S be a set. The power P∼
S of P∼ is a structure on

the power-set P S and of the same type as P∼. The operations, partial

operations, relations and topology are all defined in the obvious point-
wise manner. In particular, the domain of an n-ary partial operation
h ∈ H on P S is

{ 〈x1, . . . , xn〉 ∈ (P S)n : 〈x1(s), . . . , xn(s)〉 ∈ dom(h) for all s ∈ S },
and the topology on P S is the product topology.

Definition 2.3. Let X∼ and Y∼ be topological structures of the same

type as P∼. We say that X∼ is a substructure of Y∼ if

(1) ∅ 6= X ⊆ Y ;
(2) if g ∈ G is n-ary then gX∼(x1, . . . , xn) = gY∼(x1, . . . , xn) for all

x1, . . . , xn ∈ X;
(3) if h ∈ H is n-ary then dom(hX∼) = dom(hY∼) ∩ Xn and for all

x1, . . . , xn ∈ X, hX∼(x1, . . . , xn) = hY∼(x1, . . . , xn);
(4) if r ∈ R is n-ary then rX∼ = rY∼ ∩Xn;
(5) T X∼ is the subspace topology induced on X by T Y∼.

The substructure X∼ is closed if X is a closed set of Y∼.

Definition 2.4. Let X∼ and Y∼ be topological structures of the same

type as P∼. A continuous map ϕ : X → Y which preserves all oper-

ations, partial operations and relations is called a morphism. A mor-
phism is called isomorphism if it is bijective and its inverse is also a
morphism.

Define X = IScP(P∼) to be the class of all isomorphic copies of (topo-

logically) closed substructures of powers of P∼. So far we have defined

ON THE (UN)DECIDABILITY OF A NU-TERM 5

the categories A and X . Now we define the hom-functors D : A → X
and E : X → A.

Definition 2.5. The dual of an algebra A ∈ A is the set D(A) =
A(A,P) ≤ P∼

A of homomorphisms from A to P. The dual of a

homomorphism u : A → B, where A,B ∈ A, is the map D(u) :
D(B) → D(A) defined by (D(u))(x) = x◦u. The dual of a topological
structure X∼ ∈ X is the set E(X∼) = X (X∼,P∼) ≤ PX of morphisms.

The dual of a morphism ϕ : X∼ → Y∼, where X∼,Y∼ ∈ X , is the map

E(ϕ) : E(Y∼) → E(Y∼) defined by (E(ϕ))(α) = α ◦ ϕ.

Lemma 2.6 (B. Davey [2]). Assume that the structure on P∼ is al-

gebraic over P. Then D and E are well-defined functors between the
categories A and X ,

Our goal is to show that the second dual of an object is isomorphic
to the original. This, however, does not follow automatically from the
fact that P∼ is algebraic over P. On the other hand, the original object

can be embedded into its second dual.

Definition 2.7. Let X∼,Y∼ ∈ X . A morphism ϕ : X∼ → Y∼ is an

embedding if it is an isomorphism of X∼ onto a closed substructure of
Y∼.

For all A ∈ A define the evaluation map eA : A → ED(A) by

(eA(a))(x) = x(a)

for all a ∈ A and x ∈ D(A) = A(A,P). Similarly, for all X∼ ∈ X define

the evaluation map εX∼
: X∼ → DE(X∼) by

(εX∼
(x))(α) = α(x)

for all x ∈ X and α ∈ E(X) = X (X∼,P∼).

Lemma 2.8 (B. Davey [2]). Assume that P∼ is algebraic over P. Then

for all A ∈ A and X∼ ∈ X the evaluation maps eA and εX∼
are embed-

dings.

Definition 2.9. Assume that P∼ is algebraic over P. We say that P∼
yields a natural duality on A if for all A ∈ A the evaluation map
eA is an isomorphism. The algebra P admits a natural duality (or is
dualizable) provided there is some structure P∼ which yields a natural

duality on the quasi-variety A = ISP(P) generated by P.

6 MIKLÓS MARÓTI

Example 2.10 (Pontryagin duality). Denote by A the class of abelian
groups. The circle group is the subgroup P = { z ∈ C : |z| = 1 } of
the group of nonzero complex numbers under multiplication. It is not
hard to show that A = ISP(P). To get the topological structure P∼, let

T be the subspace topology of C, G = { · ,−1 , 1}, and H = R = ∅. The
generated class X = IScP(P∼) is the category of compact topological

abelian groups.

Example 2.11 (Stone duality). Let P be the two-element Boolean
algebra on {0, 1}, and P∼ be 〈{0, 1}; T 〉 where T is the discrete topology.

ThenA = ISP(P) is the category of Boolean algebras and X = IScP(P∼)

is the category of totally disconnected Hausdorff spaces. It is easy to
see that the ultra filters of a Boolean algebra A correspond to the
homomorphisms of A onto P.

Example 2.12 (Priestley duality). Let P = 〈{0, 1};∨,∧, 0, 1〉 be the
two-element bounded distributive lattice, and P∼ = 〈{0, 1};≤, T 〉 where

≤ is the binary order relation and T is the discrete topology. Then
A = ISP(P) is the category of bounded distributive lattices and X =
IScP(P∼) is the category of totally order-disconnected spaces. It is easy

to see that the prime filters of a distributed lattice A correspond to
the homomorphisms of A to P.

B. Davey and H. Warner [4] showed that if P has a near-unanimity
term then P is dualizable, thus providing an easy route to natural-
duality. But this is a two-edged sword; in the presence of even a small
degree of congruence distributivity the only dualizable algebras are
those which posses a near-unanimity term.

Recall that a lattice is join-semi-distributive if it satisfies the quasi-
identity

x ∨ y = x ∨ z =⇒ x ∨ (y ∧ z) = x ∨ y.

Clearly, distributive lattices are join-semi-distributive. An algebra A ∈
A is congruence join-semi-distributive if its congruence lattice is join-
semi-distributive.

Theorem 2.13 (The NU-Obstacle Theorem, see [3]). Let P be a finite
non-trivial algebra and let A = ISP(P). The following are equivalent:

(1) P has a near-unanimity term;
(2) P generates a congruence-distributive variety and P admits a

natural duality;
(3) every finite algebra in A is congruence join-semi-distributive

and P admits a natural duality.

ON THE (UN)DECIDABILITY OF A NU-TERM 7

This theorem is true in a slightly stronger form. Please consult [3]
for further details.

Corollary 2.14. If the near-unanimity problem for finite algebras is
undecidable then it is also undecidable if a finite algebra is dualizable.

Proof. Assume that it is decidable if a finite algebra is dualizable. Now
we present a decision procedure for the near-unanimity problem. Take
a finite algebra P. By Jónsson’s theorem we can decide if the variety
V generated by P is congruence distributive (check if the 3-generated
free algebra in V is congruence distributive). If it is not, then P cannot
have a near-unanimity term. Otherwise, check if P admits a duality. If
it does, then P has a near-unanimity term, otherwise it does not. �

3. Minsky machines

In mathematics we capture the concept of deterministic computation
by generic “machines”. The best known example is the Turing machine,
but there are several other equivalent machines. In this section we
introduce one of the less known machines, the Minsky machine, which
can be a very powerful tool in proving the undecidability of algebraic
problems. For a beautiful survey of algorithmic problems in varieties,
including applications of the Minsky machine see [6].

The Minsky machine was invented by Marvin Minsky in 1961 (see
[9, 10]), but he writes that the concept was inspired by some ideas of
Rabin and Scott [12]. The “canonical” definition is a two-tape non-
writing machine, whose tapes are infinite to the right and bound on
the left. The first cells on both tapes always contain the digit 1, and
all other cells contain the digit 0. The digit 1 on each tape only serves
as an indicator of the beginning of the tape. We give an equivalent
definition here.

The “hardware” of a Minsky machine M consists of two registers A
and B, which can contain arbitrary natural numbers. The “software”
is a finite set S of states together with a list of commands. There are
two special states: the initial state q1 ∈ S, and the halting state q0 ∈ S.
The machine starts in the initial state, stops at the halting state, and
at any given time it is in one of the states. For each state i ∈ S \ {q0}
there is a single command which describes the state-transition from
state i together with the change of the registers’ contents. There are
two types of commands:

• in state i increase register X by one and go to state j, and

8 MIKLÓS MARÓTI

• in state i if register X contains zero then go to state j otherwise
decrease X by one and go to state k.

Now we give the formal definition.

Definition 3.1. A Minsky machine M = 〈S, q0, q1, M〉 is a finite set
S of states with two distinguished elements q0, q1 ∈ S together with a
mapping

M : S \ {q0} → { 〈X, j〉, 〈X, j, k〉 | X ∈ {A, B} and j, k ∈ S }.
We call q0 the halting state, and q1 the initial state. The symbols A
and B represent the registers.

The mapping M describes the commands of M in the following way.
For any given state i ∈ S \ {q0} the tuple M(i) is either of the form
〈X, j〉 or 〈X, j, k〉, which correspond to the two types of commands
described earlier.

Definition 3.2. A configuration 〈i, a, b〉 of M is an element of S ×
N×N, which specifies the current state and the values of the registers.
We call 〈i, a, b〉 an initial configuration (halting configuration) if i is the
initial state q1 (or the halting state q0, respectively).

For any configuration the Minsky machine M uniquely determines
(computes) the next configuration. By iteration, starting from the
initial configuration with empty registers, we obtain a sequence of con-
figurations, which will be called the computation of M.

Definition 3.3. The processor for M is a partial mapping of the set
of configurations into itself denoted by M̄ and defined as

M̄(〈i, a, b〉) =



undefined if i = q0,

〈j, a + 1, b〉 if M(i) = 〈A, j〉,
〈j, 0, b〉 if M(i) = 〈A, j, k〉 and a = 0,

〈k, a− 1, b〉 if M(i) = 〈A, j, k〉 and a > 0,

〈j, a, b + 1〉 if M(i) = 〈B, j〉,
〈j, a, 0〉 if M(i) = 〈B, j, k〉 and b = 0,

〈k, a, b− 1〉 if M(i) = 〈B, j, k〉 and b > 0.

We will use iterative applications of the processor M̄ and adopt the
power notation defined as M̄0(〈i, a, b〉) = 〈i, a, b〉 and M̄n+1(〈i, a, b〉) =
M̄(M̄n(〈i, a, b〉)). Note that M̄n(〈i, a, b〉) is not defined if and only if
M̄m(〈i, a, b〉) is a halting configuration for some m < n.

ON THE (UN)DECIDABILITY OF A NU-TERM 9

Definition 3.4. We say that M halts if it halts on the 〈0, 0〉 input,
that is, if M̄n(〈q1, 0, 0〉) is a halting configuration for some n > 0.

We are going to show that Minsky machines are equivalent to Turing
machines in the following sense. Given a Minsky machineM (or Turing
machine T), we can construct a Turing machine T (M) (or Minsky
machine M(T)) which halts if and only if the original machine halts.
To tackle this problem, first we show the equivalence of regular Minsky
machines and Minsky machines with more than two registers. We leave
the formal definition of the n-register Minsky machine to the reader.

Lemma 3.5. Minsky machines and Minsky machines with more than
two registers are equivalent.

Proof. It is clear that an n-register Minsky machine can simulate a 2-
register Minsky machine; we just use the same program and do not use
the remaining registers. To prove the other direction we need a few
subroutines for Minsky machines.

Each subroutine definition has three parts: the head, the body and
the tail. The head is a single line starting with the keyword DEF
followed by the name of the subroutine and a list of formal parameters.
The body consists of commands, one in each line. Each command starts
with the state in which it must be applied, followed by the command
to be executed. In the tail we list each state in which the machine can
continue after the completion of the defined subroutine. The “built-
in” subroutines are the commands of Minsky machines denoted by
i : inc X, j for M(i) = 〈X, j〉 and i : dec X, j, k for M(i) = 〈X, j, k〉.
Clearly, subroutines and composition of subroutines can be compiled
into lists of commands in a trivial way.

Claim 1. We can clear a register X (decrement it to zero).

DEF clr X, r:
s1 : dec X, r, s1

r : (next statement, assures that X = 0)

Claim 2. If register A = 0 then we can swap the values of A and B.

DEF mov B, A, r: (assumes that A = 0)
s1 : dec B, r, s2

s2 : inc A, s1

r : (next statement, assures that B = 0)

10 MIKLÓS MARÓTI

From now on we assume that the value of register B is zero before
and after the following computations. We will use B to hold temporary
values. Let p be a fixed positive integer.

Claim 3. We can multiply the value of A by p.

First in a loop we decrement A by one and increment B by p, then
we swap the values of A and B.

DEF mul A, p, r: (assumes that B = 0)
s1 : dec A, sp+2, s2

s2 : inc B, s3
...

sp : inc B, sp+1

sp+1 : inc B, s1

sp+2 : mov B, A, r
r : (next statement, assures that B = 0)

Claim 4. We can divide the value of A by p and store the integer part
of the quotient in A.

This is clear. First in a loop we decrement A by p and increment B
by one, then we swap the values of A and B.

DEF div A, p, r: (assumes that B = 0)
s1 : dec A, sp+2, s2

...
sp−1 : dec A, sp+2, sp

sp : dec A, sp+2, sp+1

sp+1 : inc B, s1

sp+2 : mov B, A, r
r : (next statement, assures that B = 0)

One can notice that with a slight modification of the previous sub-
routine we can test the divisibility of A by p. The trick is to record the
remainder “in the states”, and then to rebuild the original value. We
can do this since p is a fixed integer.

Claim 5. We can test whether the value of A is divisible by p, while
keeping the value of A the same.

DEF test-div A, p, r1, r2: (assumes that B = 0)
s1 : dec A, s2p+3, s2

s2 : dec A, s2p+1, s3

ON THE (UN)DECIDABILITY OF A NU-TERM 11

s2 : dec A, s2p, s4
...

sp−1 : dec A, sp+4, sp

sp : dec A, sp+3, sp+1

sp+1 : inc B, s1

sp+2 : inc A, sp+3

sp+3 : inc A, sp+4
...

s2p : inc A, s2p+1

s2p+1 : inc A, s2p+2

s2p+2 : dec B, r2, sp+2

s2p+3 : mov B, A, s2p+4

s2p+4 : mul A, p, r1

r1 : (next statement when A ≡ 0 (mod p), assures that B = 0)
r2 : (next statement when A 6≡ 0 (mod p), assures that B = 0)

Now we are ready to describe the emulation of an n-register Minsky
machine N in a 2-register Minsky machine M. The machine N has
configurations like 〈i, a1, . . . , an〉. We encode it as the configuration
〈i, pa1

1 · · · pan
n , 0〉 of M where p1, . . . , pn are the first n prime numbers.

The states of M will consist of the states of N together with additional
states necessary for subroutines. The program of M is a list of sub-
routines, one for each command of N . For the command i : inc X, j of
N where X is the xth register let the corresponding subroutine of M
be i : mul A, px, j. For the command i : dec X, j, k of N let it be

i : test-div A, px, s1, j
s1 : div A, px, k.

Note that we keep the value of register B zero all the time except
for temporary calculations in subroutines. One remaining small detail
is that our simulation must start from the configuration 〈q1, 1, 0〉 in-
stead of 〈q1, 0, 0〉, hence we must increment the register A by one at
the very beginning. Clearly, the states and commands of M can be
algorithmically constructed from those of N . �

Now we prove the equivalence of Turing machines and 3-register
Minsky machines. There are many equivalent definitions of the Turing
machine. Here we will use a one-tape machine, whose tape is infinite
in both directions and can store the digits 0 and 1.

12 MIKLÓS MARÓTI

Lemma 3.6. Turing machines and Minsky machines with three regis-
ters are equivalent.

Proof. It is an easy programming exercise to simulate Minsky machines
by Turing machines. For example one can have a tape for each register,
then the encoding is trivial, and refer to the equivalence of regular
Turing machines and Turing machines with more than one tape. The
other direction is more interesting, although not more difficult.

Let T be a Turing machine. A configuration of T can be specified by
a tuple 〈i, t, p〉 where i is a state, t : Z → {0, 1} is a mapping describing
the tape and p ∈ Z is the current position of the head. Since T starts
on the empty tape, only finitely many 1’s can be written on t. This
allows us to encode t and p, up to equivalence under the operation of
shifting the tape, into two natural numbers:

At,p =
∞∑

n=0

t(p + n) ∗ 2n, and

Ct,p =
∞∑

n=0

t(p− 1− n) ∗ 2n.

We will store these values in registers A and C of a 3-register Minsky
machine. Remember that we need register B to hold temporary values;
otherwise it must be zero. Now we can test the digit under the head
by checking if A is divisible by 2. We can modify the digit under the
head by either incrementing or decrementing A by one. We can move
the head to the right by reading the digit under the head, dividing
A by 2, multiplying C by 2 and incrementing C by one if the digit
1 was under the head at the previous position. Moving the head to
the left is analogous. All these computations can be calculated with
a 3-register Minsky machine N (see the proof of the previous lemma),
and the states and commands of N can be algorithmically constructed
from those of T . �

Corollary 3.7 (Minsky [9]). Turing machines and Minsky machines
are equivalent.

This means that the Halting Problem for Minsky machines is as dif-
ficult as for Turing machines; that is, undecidable. Thus a new path
opens for proving the undecidability of algebraic problems by inter-
preting Minsky machines. For example this route was taken in proving
the undecidability of various kinds of word problems [6]. Perhaps the

ON THE (UN)DECIDABILITY OF A NU-TERM 13

simplicity of the Minsky machine could be employed in other algebraic
problems.

We already know that Turing and Minsky machines are equivalent,
but a stronger connection exists between them, connecting the class of
Turing-computable and Minsky-computable functions.

Definition 3.8. We say that a partial function f : N → N is com-
putable by a Minsky machine if there exists a Minsky machine M such
that for all a ∈ N

(1) if f(a) is defined then M halts on the input 〈q1, a, 0〉, that is
M̄n(〈q1, a, 0〉) = 〈q0, a

′, b′〉 for some n > 0, and the final value
a′ of register A is f(a),

(2) if f(a) is undefined then M does not halt on the input 〈q1, a, 0〉.
We assume that the reader knows the corresponding definition for

Turing machines and can figure it out for Minsky machines with more
than two registers.

Theorem 3.9. Let f : N → N be a partial function. Then the following
are equivalent:

(1) f is computable by a Turing machine.
(2) f is computable by a Minsky machine with three registers.
(3) There exists a partial mapping g : N → N that is computable by

a 2-register Minsky machine such that g(2a) is defined iff f(a)
is defined and g(2a) = 2f(a) for all natural numbers a.

Proof. (1) ⇒ (2) Assume that f is computable by a Turing machine
T . We will use the encoding described in the proof of Lemma 3.6.
We already know that the commands of T can be carried out by a 3-
register Minsky machine N provided that the the initial configuration
of N matches that of T .

Let a be a fixed natural number and assume that we are calculating
f(a). The corresponding initial configuration of T is 〈q1, t, 0〉 where
the tape contains the standard encoding of the number a:

t(n) =

{
1 if 0 ≤ n < a, and

0 otherwise.

The corresponding configuration of N is 〈q1, At,0, 0, Ct,0〉 where At,0 =
2a−1 and Ct,0 = 0. So our first task is to transform the initial configu-
ration 〈q1, a, 0, 0〉 of N to 〈q1, 2

a− 1, 0, 0〉, then we start the simulation
of T . Clearly, this transformation can be done using the following
subroutine.

14 MIKLÓS MARÓTI

DEF exp A, p, r: (assumes that B = C = 0)
s1 : mov A, C, s2

s2 : inc A, s3

s3 : dec C, r, s4

s4 : mul A, p, s3

r : (next statement, assures that B = C = 0)

Now we are at the point where the simulation is finished and the
result is on the “tape”, that is, encoded in the registers. The result
must be somehow decoded and stored in register A. To do this we need
to know the format of the answer on the tape. One possible format
(of the many equivalent ones) is the following. We say that T has
computed b if it stops in a halting configuration 〈q0, t, p〉 where

t(n) =

{
1 if p ≤ n < p + b, and

0 if n = p + b.

This means in our encoding that At,p = 2f(a) − 1 + c ∗ 2f(a)+1 for some
natural number c. But this number is easy to convert to f(a) by the
following subroutine (assuming that B = 0):

s1 : clr C, s2

s2 : test-div A, 2, s5, s3

s3 : inc C, s4

s4 : div A, 2, s2

s5 : clr A, s6

s6 : mov C, A, q0.

(2) ⇒ (3) Assume that f is computable by a 3-register Minsky ma-
chine N . Now let M be the 2-register Minsky machine described in
the proof of Lemma 3.5, and g be the partial function computed by
M. Let a be a fixed natural number, and assume further that we
want to calculate f(a). The corresponding initial configuration of N is
〈q1, a, 0, 0〉. This is encoded as 〈q1, 2

a3050, 0〉 in our simulation which
is exactly the initial configuration of M for g(a). So nothing is to be
done at the start.

Once the simulation is over, the machine M will stop in a halting
configuration of the form 〈q0, 2

f(a)3b5c, 0〉 for some natural numbers b
and c. Our job is now to convert 2f(a)3b5c to 2f(a), which can be done
with the following subroutine:

s1 : test-div A, 3, s2, s3

ON THE (UN)DECIDABILITY OF A NU-TERM 15

s2 : div A, 3, s1

s3 : test-div A, 5, s4, q0

s4 : div A, 5, s3.

(3) ⇒ (1) Minsky machines can be simulated by Turing machines,
and any recursive function can be calculated by Turing machines. There-
fore if a Minsky machine M can calculate g then a Turing machine
calculating f can be constructed algorithmically from M. �

4. Undecidability of a partial NU-term

The near-unanimity problem (or NU-problem) is to input a finite
algebra and then determine if it has a near-unanimity term. At present,
it is unknown if the NU-problem is decidable. However, partial results
have been proven and we hope that they might be extended to solve
the problem. The following direction was taken in [7].

Definition 4.1. Let A be a fixed finite algebra, t(x1, . . . , xn) be a term
of A, and S be a subset of A. We say that t is a partial near-unanimity
term on S if t(y, . . . , y, xi, y, . . . , y) = y for all 1 ≤ i ≤ n and xi, y ∈ S.

Note that a term t of A is a NU-term iff it is a partial NU-term on
A. Now one can ask the decidability of a partial NU-term on some
subset. It was proved in [7] that the existence of a partial NU-term on
a fixed two-element subset is undecidable. In the proof R. McKenzie
used Minsky machines. I was able to extend his proof to larger sub-
sets, namely to the subset excluding two fixed elements; still proving
undecidability. To get the complete version one just has to “paste to-
gether the 2 and n−2 element proofs”. The feasibility of such a result,
however, seems remote.

In the rest of this section we are going to prove the n − 2 element
version in the following way. For any Minsky machine M we define
an algebra A(M) with two special elements r, w ∈ A(M) such that
A(M) will have a partial near-unanimity term on A(M) \ {r, w} iff
M halts. This is clearly enough since the halting problem for Minsky
machines is undecidable.

Let S be the set of states of M with two special states: the initial
state q1 ∈ S and the halting state q0 ∈ S. Let the symbols A and
B denote the registers of M. For each i ∈ S \ {q0} there is a unique
command which is either of the form

• i : inc R, j (increase register R ∈ {A, B} by one and go to state
j ∈ S), or

16 MIKLÓS MARÓTI

• i : dec R, j, k (if register R ∈ {A, B} contains zero then go to
state j ∈ S otherwise decrease register R by one and go to state
k ∈ S).

Now we define the algebra A(M) in full detail. We advise the reader
to skim through this definition and return to it when reading the sub-
sequent proofs.

Definition 4.2. Let C = {0, A,B, 1}. We define the algebra A(M)
on the set A(M) = S × C ∪ {p, r, w} with the following operations

I(x) =


w if x ∈ {r, w},
〈q1, 0〉 if x = p,

r if x ∈ S × C;

M(x, y, z, u) =



w if w ∈ {y, z, u} or r ∈ {y, z, u},
maj(y, z, u) else if maj(y, z, u) 6= p,

p else if maj(y, z, u) = p and

x ∈ {q0} × C ∪ {r},
w otherwise;

for each command i : inc R, j of M the operation

Fi(x, y) =


〈j, c〉 if x = 〈i, c〉 and y = p,

〈j, R〉 if x = 〈i, 0〉 and y ∈ S × C,

r if x = r and y = p,

w otherwise;

and for each command i : dec R, j, k of M the operations

Gi(x, y) =


〈k, c〉 if x = 〈i, c〉 and y = p,

〈k, 1〉 if x = 〈i, R〉 and y ∈ S × C,

r if x = r and y = p,

w otherwise;

Hi(x) =


〈j, c〉 if x = 〈i, c〉 and c 6= R,

r if x = r,

w otherwise.

We will investigate this algebra in detail. The first important prop-
erty of A(M) is that it almost has an absorbing element.

ON THE (UN)DECIDABILITY OF A NU-TERM 17

Definition 4.3. Let A be a set, and f : An → A. An element w ∈ A
is absorbing for f if f(ā) = w whenever ā ∈ An and w ∈ {a1, . . . , an}.

Fact 4.4. The element w of A(M) is absorbing for the operations I,
Fi, Gi and Hi.

Proof. One only has to check the definition of A(M). In the definition
of I this is stated explicitly. In the definition of Fi, Gi and Hi only the
‘otherwise’ case can be applied. �

Note that w is not an absorbing element for the operation M , but
almost, except in the first variable. Combining this with the previous
fact one can see that A(M) cannot have a partial NU-term on a subset
of more than one element that includes w. For example plugging in
w in the right-most variable of a term always yields w. We will use
the element w to indicate some irregularity of a term when plugging in
near-unanimous evaluations.

Definition 4.5. Let x̄ = (x1, x2, . . .) be a fixed set of variables, and p̄
be the constant p evaluation. For each element e ∈ A(M) let p̄|xn=e be
the evaluation xn = e and xm = p if m 6= n. We say that a term t(x̄)
is regular if t(p̄) 6= w and t(p̄|xn=e) 6= w for each n ∈ N and e ∈ S × C.

We ask the reader to check that the terms x1, I(x1), and Fq1(I(x1), x2)
are regular, while the terms I(I(x1)), Fq1(x1, x2) and M(x1, x2, x3, x4)
are not.

Definition 4.6. We define slim terms inductively. The term I(xn) is
slim for every variable xn. If t is slim, then so are Fi(t, y), Gi(t, y) and
Hi(t) for any state i ∈ S and variable y ∈ x̄.

Fact 4.7. Every regular term t that does not contain the operation M
is either slim or a variable. Moreover, if t is regular and slim then
there exists an evaluation p̄|xn=e for some xn and e ∈ S ×C, such that
t(p̄|xn=e) = r.

Proof. We use induction on the complexity of t. If t is a variable then
the statement is void.

Suppose that t(x̄) = I(t1(x̄)). Because of Fact 4.4 we know that t1
must be regular, as well. If t1 is not a variable, then according to our
assumption we have an evaluation p̄|xn=e such that t1(p̄|xn=e) = r. This
shows that t(p̄|xn=e) = w, which is a contradiction. Thus t1 must be a
variable, in which case the statement and the existence of the required
evaluation are satisfied.

18 MIKLÓS MARÓTI

Now suppose that t(x̄) = Fi(t1(x̄), t2(x̄)) for some i ∈ S. Again, both
t1 and t2 must be regular. If t1 is a variable then t(p̄) = Fi(p, t2(p̄)) = w.
Thus t1 cannot be a variable. So there exists an evaluation p̄|xn=e such
that t1(p̄|xn=e) = r, which forces t2(p̄|xn=e) = p. But p is not in the
range of any of the operations I, Fi, Gi and Hi; thus t2 must be a
variable. In this case the statement is clear.

The same argument works if the topmost operation of t is either Gi

or Hi. �

Regular slim terms play a very important role in the proof; they
essentially encode the computation of the Minsky machine M. To
see how this works, we describe the construction of a partial near-
unanimity term from a halting computation.

Lemma 4.8. If M halts, then there exists a partial near-unanimity
term on A(M) \ {r, w}.

Proof. We use the processor M̄n from Definition 3.3. Assume that M
halts in n steps, that is, M̄n(〈q1, 0, 0〉) = 〈q0,−,−〉. For each natural
number m ≤ n we define im, am, and bm by

M̄m(〈q1, 0, 0〉) = 〈im, am, bm〉.
We are going to build a slim term of depth n + 1 by induction. Put
t0 = I(x). Now suppose that tm is already defined. At step m the
machine is in state im. There is a unique command for each state.

If the command for state im is of the form i : inc R, j, then put
tm+1 = Fim(tm, ym) where ym is a new variable. Now assume that the
command for state im is of the form i : dec R, j, k where R = A. If am =
0 then put tm+1 = Him(tm). If am 6= 0 then let m′ < m be the largest
natural number such that am′ < am, and put tm+1 = Gim(tm, ym′). The
case when R = B is handled similarly using bm and bm′ instead of am

and am′ .
Finally, put t = M(tn, z1, z2, z3) where z1, z2 and z3 are new variables.

We claim that tn is a regular slim term and t is a near-unanimity term
on A(M) \ {r, w}.

Claim 1. The term tn is slim.

This follows from the construction. We have used only variables in
the second coordinates of Fi and Gi.

Claim 2. No variable of t has more than two occurrences. If a variable
has exactly two occurrences, then it is ym′ for some m and the two

ON THE (UN)DECIDABILITY OF A NU-TERM 19

occurrences are at tm′+1 = Fim′ (tm′ , ym′) and tm+1 = Gim(tm, ym′). If a
variable ym has exactly one occurrence then it is at tm+1 = Fim(tm, ym).

The variables x, z1, z2 and z3 have single occurrences. At each Fi

we always introduced a new variable. Now consider the case when
tm+1 = Gim(tm, ym′). From the definition we know that am′ < am and
am ≤ am′+1, . . . , am (assuming that R = A). Since am′ < am ≤ am′+1

and the machine cannot increase a register by more than one, am′ +1 =
am = am′+1. This implies that the command for state im′ is of the form
i : inc R, j and R = A. On the other hand, the command for state im
is of the form i : dec A, j, k and am 6= 0, therefore am+1 = am − 1. To
summarize, for each pair 〈m′, m〉

am′ + 1 = am′+1 = am = am+1 + 1, and

am ≤ am′+1, . . . , am.

Note that this condition is symmetric. If m′ is in pair with some m then
m is the least natural number such that m′ < m and am′+1 > am+1.
Therefore, ym′ has at most two occurrences.

Claim 3. tm(p̄) = 〈im, 0〉 for all m ≤ n

We prove by induction on m. For m = 0 this is true by defin-
ition: I(p) = 〈q1, 0〉. Now we prove it for m + 1. By definition
tm+1 is Fim(tm, ym), Him(tm) or Gim(tm, ym′). Therefore tm+1(p̄) is
Fim(〈im, 0〉, p), Him(〈im, 0〉) or Gim(〈im, 0〉, p). Looking up the defin-
ition of these operations we conclude that tm+1(p̄) = 〈im+1, 0〉.

Claim 4. tm(p̄|x=e) = r for all m ≤ n and e ∈ S × C.

This is clear, using induction.

Claim 5. Let h < n and e ∈ S × C be fixed and assume that yh has
exactly one occurrence in tn. Let R be the register manipulated in the
command for state ih. Then

tm(p̄|yh=e) =

{
〈im, 0〉 if 0 ≤ m ≤ h,

〈im, R〉 if h < m ≤ n.

Without loss of generality we can assume that R = A. By Claim 2,
the single occurrence of yh is at th+1 = Fih(th, yh). Therefore, if m ≤ h
then tm(p̄|yh=e) = tm(p̄) = 〈im, 0〉. We use induction on m to prove
the other case. For the base of the induction we have th+1(p̄|yh=e) =
Fih(〈ih, 0〉, e) = 〈ih+1, A〉.

20 MIKLÓS MARÓTI

Now consider the induction step from m to m + 1. Assume that
tm+1 = Fim(tm, ym). Since yh has a single occurrence, yh 6= ym, and
thus tm+1(p̄|yh=e) = Fim(〈im, A〉, p) = 〈im+1, A〉. The same argument
works when tm+1 = Gim(tm, ym′).

Now assume that tm+1 = Him(tm). From the proof of Claim 2 we
can see that ah < ah+1, . . . , an. Therefore, am 6= 0. By the definition of
tm+1 we know that either am or bm must be zero. Thus it is register B
which is manipulated in the command for state im. This implies that
tm+1(p̄|yh=e) = Him(〈im, A〉) = 〈im+1, A〉.

Claim 6. Let h < n and e ∈ S × C be fixed and assume that yh′ has
exactly two occurrences in tn as described in Claim 2. Let R be the
register manipulated in the commands for states ih′ and ih. Then

tm(p̄|yh′=e) =


〈im, 0〉 if 0 ≤ m ≤ h′,

〈im, R〉 if h′ < m ≤ h,

〈im, 1〉 if h < m ≤ n.

Without loss of generality we can assume that R = A. The same
argument works for the first two cases as in the previous claim, but
using h′ instead of h.

We prove the third case by induction on m. For the base of the induc-
tion we have th+1 = Gih(th, yh′). Hence th+1(p̄|yh′=e) = Gih(〈ih, A〉, e) =
〈ih+1, 1〉. The induction step is now easy as there are no other oc-
currences of yh′ along the term tn. Therefore, we always calculate
Fim(〈im, 1〉, p), Gim(〈im, 1〉, p), or Him(〈im, 1〉), which all yield 〈im+1, 1〉.

Claim 7. The term tn is regular. Moreover, tn(p̄|u=e) ∈ {q0}×C∪{r}
for all variables u and all e ∈ A(M) \ {r, w}.

Take any element e ∈ S × C. By Claims 3 and 4 we have tn(p̄) =
〈q0, 0〉 and tn(p̄|x=e) = r, respectively. Now take a variable yh. If yh

has no occurrence in tn then tn(p̄|yh=e) = tn(p̄) = 〈q0, 0〉. Otherwise yh

has one or two occurrences by Claim 2. Then by Claims 5 and 6 we
have tn(p̄|y=e) ∈ {q0} × C.

Claim 8. t is a near-unanimity term on A(M) \ {r, w}.

Take a near-unanimous evaluation ā on A(M)\{r, w}. If the major-
ity element is not p, then t(ā) = M(tn(ā), z1, z2, z3) = maj(z1, z2, z3).
If the majority element is p then tn(ā) ∈ {q0} × C ∪ {r} by Claim 7,
and hence t(ā) = p. Therefore, t is a near-unanimity term on A(M) \
{r, w}. �

ON THE (UN)DECIDABILITY OF A NU-TERM 21

We have seen how to encode the halting computation into the regular
slim term tn. Our goal now is the reverse; to show that the computation
of M can be recovered from a regular slim term.

Lemma 4.9. Let tn be a regular slim term of depth n + 1. Then
tn(p̄) = 〈in, 0〉 where in is the state of the machine M after the first n
steps.

Proof. We want to show that the term tn behaves the same way as
the one in the proof of the previous lemma. Denote by tm the unique
subterm of tn of depth m+1. That is, t0 = I(−), and tm+1 is Fi(tm,−),
Gi(tm,−) or Hi(tm) for some i ∈ S. Since tn is regular and the element
w is absorbing, tm(p̄|u=e) 6= w for all m ≤ n, e ∈ S×C and all variables
u of tn.

Claim 1. tm(p̄) ∈ S × {0} for all m < n.

This is clear, using induction.

Claim 2. Let x be the variable used in t0. Then x has no other occur-
rence in tn. Moreover, tm(p̄|x=e) = r for all m ≤ n and e ∈ S × C.

We use induction on m. For m = 0 we have t0(p̄|x=e) = I(e) = r.
For the induction step from m to m + 1 assume that tm(p̄|x=e) = r.
Thus tm+1(p̄|x=e) is Fi(r, y), Gi(r, y) or Hi(r) for some i ∈ S and some
variable y. We know that this value is not w. Looking up the definition
of Fi, Gi and Hi, we can see that the only choice is when the result is
r (and y = p for Fi and Gi). This completes the induction step and
proves that x 6= y when the operation is Fi or Gi.

Claim 3. Assume that a variable y 6= x has exactly one occurrence in
tn. Then the occurrence is at tm+1 = Fi(tm, y) for some m < n and
i ∈ S. Moreover, there exists no h > m such that th+1 = Hj(th) and
the command for j manipulates the same register as the one for i.

Let m be the least natural number such that tm+1 has an occurrence
of y. Then tm+1 = Fi(tm, y) or tm+1 = Gi(tm, y) for some i ∈ S.
Take e ∈ S × C, and consider tm+1(p̄|y=e). By Claim 1, tm(p̄|y=e) ∈
S×{0}. Checking the definition of Gi we see that Gi(tm(p̄|y=e), e) = w,
a contradiction. So tm+1 = Fi(tm, y). Moreover, tm+1(p̄|y=e) ∈ S×{R}
where R is the register manipulated by the command for i. Now we
show that th(p̄|y=e) ∈ S × {R} for all h > m by induction. For m + 1
we already have this. For the induction step consider a = th+1(p̄|y=e).
By definition a is Fj(〈−, R〉, p), Gj(〈−, R〉, p) or Hj(〈−, R〉) for some

22 MIKLÓS MARÓTI

j ∈ S and a 6= w. In the first two cases this shows that a ∈ S × {R}.
On the other hand, when a = Hj(〈−, R〉) 6= w then the command for
state j cannot manipulate the register R. This concludes the proof of
this claim.

Claim 4. Assume that a variable y 6= x has at least two occurrences
in tn. Then there exist m′ < m such that tm′+1 = Fi(tm′ , y), tm+1 =
Gj(tm, y) for some i, j ∈ S, the commands for i and j manipulate
the same register R, and y has no other occurrences than these two.
Moreover, there exists no m′ < h < m such that th+1 = Hk(th) and the
command for k manipulates the register R.

Let m′ and m be the least natural numbers such that tm′+1 has
exactly one and tm+1 has exactly two occurrences of y. The term tm has
exactly one occurrence of y, so we can apply the previous claim. This
proves half of the claim. It remains to be shown that tm+1 = Gj(tm, y)
for some j ∈ S, that the command for j manipulates the register R,
and that there are no other occurrences of y.

Fix e ∈ S × C. From the proof of the previous claim we know
that tm(p̄|y=e) ∈ S × {R} where R is the register manipulated by the
command for i. Consider a = tm+1(p̄|y=e). This element is either
Fj(〈−, R〉, e) or Gj(〈−, R〉, e) for some j. Since a 6= w, we must have
tm+1 = Gj(tm, y), and the command for j must manipulate R. There-
fore, tm+1(p̄|y=e) ∈ S × {1}.

Finally, we show that th(p̄|y=e) ∈ S×{1} for all h > m by induction.
We have already the basis of the induction. To show the induction step,
consider th+1. If th+1 = Hk(th) for some k then we get th+1(p̄|y=e) ∈
S × {1} by the definition of Hk. Now assume that th+1 = Fk(th, z).
Since th+1(p̄|y=e) 6= w we must have z 6= y and th+1(p̄|y=e) ∈ S × {1}.
The same argument works for Gk, as well.

Claim 5. Let im, am and bm be defined by M̄m(〈q1, 0, 0〉) = 〈im, am, bm〉.
Then the following hold for all 0 ≤ m < n.

(1) If the command for im is of the form i : inc R, j then tm+1 =
Fim(tm,−).

(2) If the command for im is of the form i : dec R, j, k, and if am 6=
0 for R = A while bm 6= 0 for R = B, then tm+1 = Gim(tm,−).

(3) If the command for im is of the form i : dec R, j, k, and if am =
0 for R = A while bm = 0 for R = B, then tm+1 = Him(tm,−).

Moreover, tm(p̄) = 〈im, 0〉 for all 0 ≤ m ≤ n.

ON THE (UN)DECIDABILITY OF A NU-TERM 23

We prove this by induction on m. For m = 0 we have t0(p̄) = I(p) =
〈q1, 0〉 = 〈i0, 0〉. For the induction step assume that (1)− (3) hold for
all m′ < m, a condition which is void if m = 0, and tm(p̄) = 〈im, 0〉.
We have to show that (1)− (3) hold for m and tm+1(p̄) = 〈im+1, 0〉.

Assume that tm+1 = Fi(tm, y) for some i ∈ S and some variable
y. We have to show that i = im and tm+1(p̄) = 〈im+1, 0〉. Since the
operation Fi is defined, the command for state i is i : inc R, j for some
R ∈ {A, B} and j ∈ S. From the induction hypothesis, tm(p̄) = 〈im, 0〉.
Consider the element e = tm+1(p̄) = Fi(〈im, 0〉, p). Since e 6= w, we
must have i = im and e = 〈j, 0〉. As im = i and the command is
i : inc R, j, we have im+1 = j. So, tm+1(p̄) = 〈im+1, 0〉.

Assume that tm+1 = Gi(tm, y) for some i ∈ S and variable y. We
have to show that i = im and tm+1(p̄) = 〈im+1, 0〉. Since the operation
Gi is defined, the command for state i is i : dec R, j, k for some R ∈
{A, B} and j, k ∈ S. Without loss of generality we can assume that
R = A. Consider e = tm+1(p̄) = Gi(〈im, 0〉, p). Since e 6= w, we
must have i = im and e = 〈k, 0〉. What remains to be shown is that
im+1 = k. We know that im+1 is either j or k depending on whether
am = 0 or am 6= 0. We claim that am 6= 0. By the definition of the
Minsky machine,

am = |{h < m : M has increased register A at step h}|
− |{h < m : M has decreased register A at step h}|.

Now using the induction hypothesis we get that

am = |{h < m : th+1 = Fih(th,−)(S+)

and the command for ih manipulates register A}|
− |{h < m : th+1 = Gih(th,−)(S−)

and the command for ih manipulates register A}|.

Take a number h from the second set S−, so th+1 = Gih(th, z) for some
variable z, and the command for ih manipulates register A. By Claim 2,
3 and 4, the variable z has exactly two occurrences; the other being
at th′+1 = Fih′ (t

′
h, z) for some h′ < h. Moreover, the command for

ih′ manipulates the same register A. Thus h′ belongs to the first set
S+. This only shows that am ≥ 0. But the same argument works for
tm+1 = Gi(tm, y), showing that there exists an m′ < m which belongs
to S+, while m 6∈ S−. Therefore, am > 0 and im+1 = k.

Finally, assume that tm+1 = Hi(tm) for some i ∈ S. We have to
show that i = im and tm+1(p̄) = 〈im+1, 0〉. Since the operation Hi is

24 MIKLÓS MARÓTI

defined, the command for state i is i : dec R, j, k for some R ∈ {A, B}
and j, k ∈ S. Without loss of generality we can assume that R = A.
Consider e = tm+1(p̄) = Hi(〈im, 0〉). Since e 6= w, we must have i = im
and e = 〈j, 0〉. What remains to be shown is that im+1 = j. We know
that im+1 is either j or k depending on whether am = 0 or am 6= 0. To
get a contradiction, suppose that am 6= 0, i.e., the set S+, defined in the
previous subsection, has more elements than S−. We know that each
element of S− is in pair with a unique element of S+. So there exists an
h < m such that th+1 = Fih(th, z) for some variable z, the command for
ih manipulates register A, and h is not in S−. Therefore, z has exactly
one occurrence in tm. If z has two occurrences then the other one must
appear after tm+1. In any case, either by Case 3 or 4, the command
for i at tm+1 = Hi(tm) cannot manipulate register A. But according
to our assumption it does, which is a contradiction. This shows that
am = 0, therefore im+1 = j.

This finishes the proof of the last claim, which includes the statement
tn(p̄) = 〈in, 0〉 of the lemma. �

The previous two lemmas give the connection between regular slim
terms and halting computations. What remains to be shown is that
a regular slim term can be found as a subterm of a near-unanimity
term on A(M) \ {r, w}, or at least as a subterm of a “minimal” near-
unanimity term.

Definition 4.10. Two terms t1 and t2 are p-equivalent iff t1(p̄) = t2(p̄)
and t1(p̄|xn=e) = t2(p̄|xn=e) for each n ∈ N and e ∈ S × C. A term is
p-minimal iff there is no p-equivalent term of smaller complexity.

Lemma 4.11. Let t be a regular p-minimal term which contains the
operation M . Then A(M) halts.

Proof. We use induction on the complexity of t. If t = Fi,c(t1, t2) then
both t1 and t2 must be regular (and p-minimal) by Fact 4.4. So at least
one of them contains the operation M and by induction we are done.
The same argument works for the operations Gi,c, Hi,c and I, as well.

Now suppose that t = M(t1, t2, t3, t4). If t2,t3 or t4 is not reg-
ular then we have some near p-unanimous evaluation f̄ such that
w ∈ {t2(f̄), t3(f̄), t4(f̄)}. This forces t(f̄) = w, which is a contra-
diction. So t2, t3 and t4 are regular. If one of them contains the
operation M , then we use induction on that sub-term. So assume that
M does not occur in t2,t3 and t4. By Fact 4.7, each of them is either
a slim term or a variable. If tk is slim (k ∈ {2, 3, 4}), then we have an

ON THE (UN)DECIDABILITY OF A NU-TERM 25

evaluation p̄|xn=e such that tk(p̄|xn=e) = r. This forces a contradiction
t(p̄|xn=e) = w. Thus t2,t3 and t4 must be variables. If two of them are
the same variable y then it is not hard to check that t is p-equivalent
to y, a contradiction to the p-minimality. Thus the terms t2,t3 and t4
are distinct variables. If t1 is not regular then we have an evaluation
p̄|xn=e such that t1(p̄|xn=e) = w. But this forces t(p̄|xn=e) = w, a con-
tradiction. So t1 must be regular. If t1 contains M then we use the
induction. If t1 does not contain M then by Fact 4.7 it is either a slim
term or a variable. It cannot be a variable because t(p̄) 6= w. So t1 is
regular and slim term. Now by Lemma 4.9 the value t1(p̄) contains the
last state of the correct piece of the computation. But t(p̄) 6= w, which
proves that we have reached the halting state. �

Theorem 4.12. Let M be a Minsky machine. The algebra A(M) has
a near-unanimity term on the set A(M) \ {r, w} iff M halts.

Proof. Suppose that t is a near-unanimity term on A(M)\{r, w}. Then
t is regular. Let t′ be a term p-equivalent to t and p-minimal. Then t′ is
not a variable; moreover, t′(p̄) = p implies that the topmost operation
of t′ is M . Now by Lemma 4.11, M halts. The other direction is proved
in Lemma 4.8. �

5. Bits and pieces towards decidability

In this section we try to solve the NU-problem for special classes of
algebras. We start with Rosenberg’s primal algebra characterization
theorem (see [13, 11]), which presents a natural framework for this.

Definition 5.1. A finite non-trivial algebra A is primal if every func-
tion on A is a term of A. We call A preprimal if it is not primal, but
including any new operation (which is not already a term of A) yields
a primal algebra. The clones of preprimal algebras are called maximal
clones. They are exactly the coatoms in the lattice of clones on the set
A.

Clearly, a primal algebra has a ternary NU-term; and it is decidable
if an algebra is primal. If the algebra is not primal, then its clone lies
in one of the maximal clones described in Rosenberg’s theorem. We
solve the NU-problem in three classes of maximal clones (out of six),
and present other partial result.

Rosenberg’s characterization is in terms of six classes of finitary re-
lations; a non-trivial finite algebra A is preprimal if and only if there
is a relation % in one of the six classes such that the term functions of

26 MIKLÓS MARÓTI

A are exactly the functions preserving the relation %. Now we define
these classes, following Quackenbush [11].

Definition 5.2. Let A be a finite set.
A subset % ⊆ A2 is a partial order if it is reflexive (〈a, a〉 ∈ % for

all a ∈ A), antisymmetric (〈a, b〉, 〈b, a〉 ∈ % imply that a = b), and
transitive (〈a, b〉, 〈b, c〉 ∈ % imply that 〈a, c〉 ∈ %). We say that b ∈ A
is a zero (unit) of % ⊆ A2 if 〈b, a〉 ∈ % (〈a, b〉 ∈ %) for all a ∈ A. Note
that a partial order has at most one zero and at most one unit.

Class (1) is the set of all partial orders with a zero and
unit.

A subset % ⊆ A2 is a permutation if % = { 〈a, α(a)〉 : a ∈ A } where
α : A → A is a permutation on A. We say that the permutation % is
prime if all cycles of α have the same prime length.

Class (2) is the set of all prime permutations.

A subset % ⊆ A2 is an equivalence relation if % is reflexive, symmetric
(〈a, b〉 ∈ % implies 〈b, a〉 ∈ %), and transitive. An equivalence relation
% is non-trivial if % 6= A2 and % 6= { 〈a, a〉 : a ∈ A }.

Class (3) is the set of all non-trivial equivalence relations.

A subset % ⊆ A4 is affine if we can define an abelian group operation,
+, on A so that 〈a, b, c, d〉 ∈ % if and only if a + b = c + d. An affine %
is prime if 〈A; +〉 is an elementary abelian p-group.

Class (4) is the set of all prime affine relations.

A subset % ⊆ Ah (for h ≥ 1) is totally symmetric if for every permuta-
tion α on {1, . . . , h}, 〈a1, . . . , ah〉 ∈ % if and only if 〈aα(1), . . . , aα(h)〉 ∈ %.
Let Ah ⊆ Ah be defined by

(∗) Ah = { 〈a1, . . . , ah〉 : ai = aj for some i 6= j }.
We say that % is totally reflexive if Ah ⊆ %. Th center of % is the set of
all a ∈ A such that for all a2, . . . , ah ∈ A, 〈a, a2, . . . , ah〉 ∈ %. We say
that % is central if it is totally symmetric, totally reflexive and has a
center which is a non-empty, proper subset of A.

Class (5) is the set of all central relations.

Let h = {0, 1, . . . , h − 1}. For 1 ≤ r ≤ m, let πm
r be the rth pro-

jection of hm onto h. Define ωm to be the h-ary relation on hm such that
〈a1, . . . , ah〉 ∈ ωm if and only if for all 1 ≤ r ≤ m, 〈πm

r (a1), . . . , π
m
r (ah)〉 ∈

hh (where hh is defined by (∗)). A subset % ⊆ Ah for h ≥ 3 is h-regularly
generated if for some m ≥ 1 there is a surjection ϕ : A → hm such that
% = ϕ−1(ωm); i.e., 〈a1, . . . , ah〉 ∈ % if and only if 〈ϕ(a1), . . . , ϕ(ah)〉 ∈

ON THE (UN)DECIDABILITY OF A NU-TERM 27

ωm. Clearly, if % is h-regularly generated, then % is totally reflexive and
totally symmetric.

Class (6) is the set of all h-regularly generated relations.

Theorem 5.3 (Rosenberg [13]). A finite non-trivial algebra A is pre-
primal if and only if for some h-ary relation, %, in classes (1) − (6),
the set of term functions of A is just the set of all functions on A
preserving %.

First we show that the NU-term problem is decidable inside a max-
imal clone of class (1). We need the following lemma, which grew out
of discussions with R. McKenzie.

Lemma 5.4. For a finite algebra A and a natural number k, it is
decidable whether A has a near-unanimity term in which at most k
variables have repeated occurrences.

Proof. It is enough to effectively find a number K so that if A has a
NU-term, then it has a NU-term of depth at most K.

Suppose we do have a near-unanimity term t, and its tree has a long
branch t = t0, t1, . . . , tn. Here ti = gi(ti+1,−, . . . ,−), where gi is a basic
operation with variables permuted. Let X be the tuple x1, x2, . . . , xk of
variables permitted to have repeated occurrences, and Y be the tuple
of remaining variables.

We find a long subsequence {sj} of {ti}, such that when all variables
of Y are replaced by one new variable z, then sj(X; z) = sl(X; z) for
all j and l. We can also assume that B(sj) = B(sl) for all j and l,
where B(s(X; Y)) is the set of all term operations b(x, z) of A arising
from the term s(X; Y) by choosing some variable among Y , replacing
it by z, and then replacing all other variables of Y and X by x. Also,
we can assume that sj(x, . . . , x) = sl(x, . . . , x).

Now we claim that if we create a new term t′ by replacing the explicit
occurrence of s1 in t (i.e., at ti = gi(s1,−, . . . ,−), where s1 = ti+1) by
s2, then this shorter term t′ is also a near-unanimity term.

Indeed, in each near-unanimous evaluation in which the minority
variable is from X, the terms s1 and s2 behave the same. If the minority
variable is from Y then it has exactly one occurrence. If this occurrence
is inside of s1, then we use that fact that B(s1) = B(s2). If it is outside
then we use that fact that s1(x, . . . , x) = s2(x, . . . , x). �

Corollary 5.5. Given a finite algebra A whose clone lies in a maximal
clone of class (1). Then it is decidable if A has a near-unanimity term.

28 MIKLÓS MARÓTI

Proof. We will prove that if A has a NU-term, then it has an NU-term
in which no variable has multiple occurrences. By the previous lemma
this is enough.

Assume that t(x1, . . . , xn) is a NU-term of A. Put

t′(y11, . . . , y1m1 , y21, . . . , ynmn),

the term obtained from t by replacing all occurrences of each variable
xi by distinct variables yij. We claim that t′ is also a NU-term. Let
≤ be a compatible partial order on A with a zero element 0 ∈ A and
a unit element 1 ∈ A. Take elements a, b ∈ A, and consider the near-
unanimous evaluation t′(a, . . . , a, b, a, . . . , a) where yij = b for some i
and j. Since ≤ is compatible with t′,

t′(a, . . . , a, b, a, . . . , a) ≤ t′(a, . . . , a, 1, . . . , 1, a, . . . , a)

= t(a, . . . , a, 1, a, . . . , a) = a,

where yik = 1 for all k, and xi = 1. On the other hand, a ≤
t′(a, . . . , a, b, a, . . . , a) by a similar argument. Therefore

t′(a, . . . , a, b, a, . . . , a) = a

for all a, b ∈ A and i, j. �

Now we show that no NU-term can exist in the maximal clones of
class (4) and (6), so the problem is decidable in these cases. We call
an algebra A affine if it has a compatible affine relation.

Proposition 5.6. No finite affine algebra has a near-unanimity term.
In particular, a finite algebra A whose clone lies in a maximal clone of
class (4), has no near-unanimity term.

Proof. Assume the contrary, that there exists a NU-term t(x1, . . . , xn)
of A. Let 0 ∈ A be the zero element of the abelian group 〈A; +〉. Fix
another element a 6= 0 of A. For 0 ≤ k ≤ n, let āk be the vector
〈a, . . . , a, 0, . . . , 0〉 ∈ An with k-many a entries. We show by induction
that t(āk) = 0, which is a contradiction for k = n. The base of the
induction, k = 0, is true, since t is a NU-term. For the induction step

t(a, . . . , a, 0, 0, . . . , 0) = 0, by the induction hypothesis,

t(0, . . . , 0, a, 0, . . . , 0) = 0, by the NU-term t,

t(0, . . . , 0, 0, 0, . . . , 0) = 0, by the NU-term t, and

t(a, . . . , a, a, 0, . . . , 0) = b, for some b ∈ A.

On the left hand side all columns are in the relation x + y = z + u.
Since this relation is preserved by t, 0 + 0 = 0 + b, that is, b = 0. �

ON THE (UN)DECIDABILITY OF A NU-TERM 29

Proposition 5.7. A finite algebra A whose clone lies in a maximal
clone of class (6), has no near-unanimity term.

Proof. Let h,m be natural numbers, ϕ : A → hm be a surjection, and
% ⊆ Ah be a relation as described in the Definition 5.2 under class (6).
Assume that there exists a NU-term t(x1, . . . , xn) of A which preserves
%. We want to get a contradiction.

Recall that h = {0, 1, . . . , h − 1} and h ≥ 3. Since ϕ is surjective,
there exist a0, . . . , ah−1 ∈ A such that πm

1 (ϕ(ai)) = i for all 0 ≤ i < h.
For 0 ≤ k ≤ n put b̄k = 〈a0, . . . , a0, a1, . . . , a1〉 ∈ An with k many
a0 entries. We will prove by induction that πm

1 (ϕ(t(b̄k))) 6= 0 for all
0 ≤ k ≤ n. For k = 0 this is true by definition.

For the induction step assume that the claim is true for k. Put
j = πm

1 (ϕ(t(b̄k))). By the induction hypothesis, j 6= 0. Consider the
following tuples of An

b̄k+1 = 〈 a0, . . . , a0, a0, a1, . . . , a1 〉,
〈 a1, . . . , a1, a0, a1, . . . , a1 〉,

...
〈 aj−1, . . . , aj−1, a0, aj−1, . . . , aj−1 〉,

b̄k = 〈 a0, . . . , a0, a1, a1, . . . , a1 〉,
〈 aj+1, . . . , aj+1, a0, aj+1, . . . , aj+1 〉,

...
〈 ah−1, . . . , ah−1, a0, ah−1, . . . , ah−1 〉,

where the ith row (i 6= 0, j) is the near-unanimous ai tuple with a0 at
the k +1-th coordinate. Notice that each column has a repeated entry.
Indeed, for the k + 1-th column it is a0, and for all other columns it
is either a0 or a1 from the rows b̄k+1 and b̄k. This means that each
column is in the relation %. Therefore, by applying t,

〈t(b̄k+1), a1, . . . , aj−1, t(b̄
k), aj+1, . . . , ah−1〉 ∈ %.

Denote this tuple by c̄. By the definition of %, ϕ(c̄) ∈ ωm. Then by the
definition of ωm, πm

1 (ϕ(c̄)) ∈ hh. But we can calculate this tuple,

πm
1 (ϕ(c̄)) = 〈πm

1 (ϕ(t(b̄k+1))), 1, . . . , j − 1, j, j + 1, . . . , h− 1〉.
By the definition of hh, this tuple must have a repetition, therefore
πm

1 (ϕ(t(b̄k+1))) 6= 0. This completes the proof of the induction step.
We have shown that πm

1 (ϕ(t(b̄n))) 6= 0. On the other hand,

πm
1 (ϕ(t(b̄n))) = πm

1 (ϕ(t(a0, . . . , a0))) = πm
1 (ϕ(a0)) = 0,

which is a contradiction. �

30 MIKLÓS MARÓTI

In the rest of this section we focus on the case when the finite algebra
in question is idempotent. As the first step we reduce the problem to
simple algebras.

Definition 5.8. An algebra A is idempotent if f(x, . . . , x) = x for each
basic operation f . Note that A cannot have constants, by definition,
if |A| > 1.

Lemma 5.9. The existence of a near-unanimity term for idempotent
algebras is decidable if and only if it is decidable for simple idempotent
algebras.

In order to prove this result we need the following definition and fact
which describe a way to compose NU-terms.

Definition 5.10. Let s(x1, . . . , xn) and t(y1, . . . , ym) be terms in n
and m variables, respectively. Their star product s ? t is a term in nm
variables defined as

(s ? t)(z11, . . . , znm) = s(t(z11, . . . , z1m), . . . , t(zn1, . . . , znm)).

Fact 5.11. Let A and B be similar idempotent algebras. If s and
t are near-unanimity terms of A and B, respectively, then s ? t is a
near-unanimity term of both A and B.

Proof. First we prove the claim for A. Let a, b ∈ A, and put c =
(s ? t)(a, b, . . . , b). We want to show that c = b. Notice that this is
enough, as we did not assume any ordering of the variables of s and t.
By definition, c = s(t(a, b . . . , b), t(b, . . . , b), . . . , t(b, . . . , b)). Since A is
idempotent, t(b, . . . , b) = b, and c = s(t(a, b, . . . , b), b, . . . , b). As s is a
NU-term, we conclude that c = b. The proof for B is similar. �

Proof of Lemma 5.9. One direction is trivial. For the other direction
assume that the problem is decidable for simple idempotent algebras,
and let A be a finite idempotent algebra, which is not simple. The de-
cision procedure we present is recursive; we assume that for all algebras
of cardinality less than of A we can decide the problem.

Let ϑ be a nontrivial congruence of A, and B be a congruence block
of ϑ. We claim that B is a subuniverse of A. Indeed, for each basic
operation f and elements b1, . . . , bk ∈ B, f(b1, . . . , bk) ϑ f(b1, . . . , b1) =
b1. Note that, by Definition 5.8, f cannot be a constant.

Denote by B the subalgebra of A on the set B. If A has a NU-term,
then the same term is a NU-term for B. Similarly, the same term is a
NU-term for A/ϑ. Therefore a necessary condition for A to have an

ON THE (UN)DECIDABILITY OF A NU-TERM 31

NU-term is that each proper subalgebra and proper homomorphic im-
age of A have a NU-term. We will show that this condition is sufficient,
as well.

Let t1, . . . , tn be NU-terms on the nontrivial congruence blocks of
ϑ, respectively, and s be a NU-term on A/ϑ. By Fact 5.11, the term
t = t1 ? (t2 ? (. . . (tn−1 ? tn) . . .)) is a NU-term on each congruence block
of ϑ. We claim that t ? s is a NU-term on A. Take a, b ∈ A. Since s is
idempotent on A and a NU-term of A/ϑ,

(t ? s)(a, . . . , a, b, a, . . . , a) = t(a, . . . , a, b′, a, . . . , a) = a

for some element b′ = s(a, . . . , a, b, a, . . . , a) ϑ a. �

We call an algebra A strictly simple if it is simple and has no non-
trivial subalgebras. By a non-trivial subalgebra we mean a proper
subalgebra having at least two elements.

Theorem 5.12 (Á. Szendrei [14, 15]). Let A be a finite idempotent
strictly simple algebra. Then the clone of A is one of the following
clones.

(1) |A| = 2 and CloA is the trivial clone [id].

For a vector space V denote by EndV the ring of endomor-
phisms of V, and by (EndV)V the left module over EndV.

(2) A finite dimensional vector space V = 〈A; +, K〉 over a finite
field K can be defined on A, and CloA is the clone Cloid((EndV)V)
of idempotent operations of (EndV)V.

For a permutation group G on A let Rid(G) denote the clone
of all idempotent operations f on A such that f admits each
member of G as an automorphism.

(3) CloA = Rid(G) for some permutation group G on A such that
every non-identity member of G has at most one fixed point.

Let 0 ∈ A be some fixed element. For k ≥ 2 put

χ0
k = { 〈a1, . . . , ak〉 ∈ Ak : ai = 0 for at least one i, 1 ≤ i ≤ k }.

Denote by F0
k the clone of all operations on A preserving the

relation χ0
k. Furthermore, put F0

ω =
⋂∞

k=2F0
k .

(4) CloA = Rid(G) ∩ F0
k for some k (2 ≤ k ≤ ω), some element

0 ∈ A, and some permutation group G on A such that 0 is the
unique fixed point of every non-identity member of G.

32 MIKLÓS MARÓTI

For a relation % on A let P% denote the clone of operations
on A preserving %.

(5) |A| = 2 and CloA = Rid(G) ∩ P≤ for some permutation group
G on A; or |A| = 2 and CloA = Rid({id})∩P≤ ∩F0

k for some
k (2 ≤ k ≤ ω) and some element 0 ∈ A.

(6) |A| = 2 and CloA is the clone [∨] generated by the join oper-
ation; or |A| = 2 and CloA is the clone [∧] generated by the
meet operation.

Lemma 5.13. The near-unanimity problem for idempotent, strictly
simple algebras is decidable.

Proof. Let A be a idempotent, strictly simple algebra. We will use
classification of Theorem 5.12 in the following decision procedure.

Assume that A has a compatible partial order relation with zero and
unit. Clearly, this condition is decidable. Then by Corollary 5.5 the
NU-problem is decidable. This handles the cases (1), (5) and (6) of
Theorem 5.12.

Recall that the algebra A is called affine if it has a compatible affine
relation. This is also a decidable property of A. In Proposition 5.6
we have seen that if A is affine then it has no NU-term. This handles
case (2) of Theorem 5.12, because in that case CloA has a compatible
affine relation.

If neither of the previous two conditions hold, then by Theorem 5.12
we know that CloA is of type (3) or (4). In the rest of the proof we
will show that the NU-problem is decidable even in these two cases.

Claim 1. Assume that CloA = Rid(G) as described in case (3) of
Theorem 5.12. Then A has a ternary NU-term.

Consider the function f : A3 → A, defined as

f(a, b, c) =

{
maj(a, b, c) if the majority exists,

a otherwise.

Clearly, f is a NU-term and admits all permutations on A.

Claim 2. Assume that CloA = Rid(G) ∩ F0
k as described in case (4)

of Theorem 5.12, and k < ω. Then A has a NU-term.

ON THE (UN)DECIDABILITY OF A NU-TERM 33

Consider the function f : Ak+1 → A, defined as

f(a1, . . . , ak+1) =


0 if ai = aj = 0 for some i 6= j,

maj(a1, . . . , ak+1) else if the majority exists,

a1 otherwise.

Clearly, f is a NU-term. By the description of case (4), the element 0
is a fixed point of every member of G. Therefore f ∈ Rid(G). To show
that f ∈ F0

k , take ā1, . . . , āk+1 ∈ χ0
k. By the Pigeon Hole Principle,

there exist i, i′ (1 ≤ i, i′ ≤ k + 1) and j (1 ≤ j ≤ k) such that
ai

j = ai′
j = 0. This shows that f(a1

j , . . . , a
k+1
j) = 0, therefore

〈f(a1
1, . . . , a

k+1
1), . . . , f(a1

k, . . . , a
k+1
k)〉 ∈ χ0

n.

Claim 3. If CloA ⊆ F0
ω for some 0 ∈ A then A has no NU-term.

Assume the contrary, that f ∈ F0
ω is an n-ary NU-term. Take an

element a ∈ A\{0}, and consider the tuples āi = 〈a, . . . , a, 0, a, . . . , a〉 ∈
An for 1 ≤ i ≤ n where ai

i = 0. Clearly, āi ∈ χ0
n, and

〈f(a1
1, . . . , a

n
1), . . . , f(a1

n, . . . , a
n
n)〉 = 〈a, . . . , a〉 6∈ χ0

n.

This shows that f 6∈ F0
n, which is a contradiction.

Claim 4. Fix an element 0 ∈ A. Then F0
k ⊇ F0

k+1 for all k ≥ 2.

Take a function f : An → A preserving χ0
k+1. To show that it

preserves χ0
k, as well, take ā1, . . . , ān ∈ χ0

k. Put b̄i = 〈āi, ai
k〉 =

〈ai
1, . . . , a

i
k, a

i
k〉 for 1 ≤ i ≤ n. Clearly, b̄i ∈ χ0

k+1. Since f preserves
χ0

k+1, the tuple

〈f(b1
1, . . . , b

n
1), . . . , f(b1

k, . . . , b
n
k), f(b1

k+1, . . . , b
n
k+1)〉

=〈f(a1
1, . . . , a

n
1), . . . , f(a1

k, . . . , a
n
k), f(a1

k, . . . , a
n
k)〉

is in relation χ0
k+1. This means that 〈f(a1

1, . . . , a
n
1), . . . , f(a1

k, . . . , a
n
k)〉 ∈

χ0
k, which is what we wanted to show.

Claim 5. Let f be an n-ary function on A, and 0 ∈ A. If f ∈ F0
n then

f ∈ F0
k for all n ≤ k ≤ ω.

Fix k such that n ≤ k < ω, and take ā1, . . . , ān ∈ χ0
k. By definition,

there exists a “choice function” ζ : {1, . . . , n} → {1, . . . , k} such that
ai

ζ(i) = 0 for all 1 ≤ i ≤ n. Put b̄i = 〈ai
ζ(1), . . . , a

i
ζ(n)〉 for 1 ≤ i ≤ n.

Since bi
i = 0, b̄i ∈ χ0

n. By our hypothesis,

〈f(b1
1, . . . , b

n
1), . . . , f(b1

n, . . . , b
n
n)〉 ∈ χ0

n.

34 MIKLÓS MARÓTI

This means that f(b1
j , . . . , b

n
j) = 0 for some 1 ≤ j ≤ n, and therefore

f(a1
ζ(j), . . . , a

n
ζ(j)) = 0. Hence f ∈ F0

k . Finally, since F0
2 ⊇ · · · ⊇ F0

ω

and f ∈ F0
k for all n ≤ k < ω, f ∈ F 0

ω .

Claim 6. Assume that CloA is of type (3) or (4) as described in The-
orem 5.12. Then it is decidable if A has a NU-term.

First we check if A has a ternary NU-term. If it does, then we are
done. Assume that A has no ternary NU-term. Then by Claim 1,
CloA is of type (4). Moreover, by Claims 2 and 3, A has no NU-term
if and only if CloA ⊆ F0

ω for some 0 ∈ A.
Now we show that, given 0 ∈ A, it is decidable if CloA ⊆ F0

ω. Take
a basic n-ary operation f of A. Clearly, we can decide if f ∈ F0

n. If
f ∈ F0

n then f ∈ F0
ω, otherwise f 6∈ F0

ω. So, CloA ⊆ F0
ω if and only if

f ∈ F0
n for all basic operations f(x1, . . . , xn). �

References

[1] S. Burris and H.P. Sankappanavar, A course in universal algebra. Graduate
Texts in Mathematics, Springer-Verlag, New York, 1981.

[2] B. A. Davey, Duality theory on ten dollars a day. Algebras and Orders (Mon-
treal, 1991), NATO Advanced Study Institute Series, Series C, 389, 71–111.

[3] B. A. Davey, L. Heindorf and R. McKenzie, Near unanimity: an obstacle to
general duality theory Algebra Universalis, 33 (1995), 428–439.

[4] B. A. Davey and H. Werner, Dualities and equivalences for varieties of alge-
bras. Contributions to lattice theory (Szeged, 1980), Colloq. Math. Soc. János
Bolyai, 33 (1983), 101–275.

[5] J. Ježek and M. Maróti, Membership problems for finite entropic groupoids.
(to appear).

[6] O. G. Kharlampovich and M. V. Sapir, Algorithmic problems in varieties.
Int. Journal of Algebra and Comp., 5, Augustus & October 1995.

[7] R. McKenzie, Is the presence of a nu-term a decidable property of a finite
algebra? October 15, 1997 (manuscript).

[8] R. McKenzie, G. McNulty and W. Taylor, Algebras, Lattices, Varieties, Vol-
ume I. Wadsworth & Brooks/Cole, Monterey, CA, 1987.

[9] M. L. Minsky, Recursive unsolvability of Post’s problem of “tag” and other
topics in the theory of Turing Machines, Ann. Math., 74 (1961), 437–455.

[10] M. L. Minsky, Computations: finite and infinite machines. Prentice-Hall,
Englewood Cliffs, N.J., 1967.

[11] R. W. Quackenbush, A new proof of Rosenberg’s primal algebra characteriza-
tion theorem. Finite algebra and multiple-valued logic (Szeged, 1979), Colloq.
Math. Soc. János Bolyai, 28 (1981), 603–634.

[12] M. O. Rabin and D. Scott, Finite automata and their decision problems, IBM
Journal of Res. and Devel., 3(2) (1969), 114–125.

ON THE (UN)DECIDABILITY OF A NU-TERM 35

[13] I. Rosenberg, Über die funktionale Vollständigkeit in den mehrwertigen
Logiken. Rozpravy Československe Akad. Věd., Ser. Math. Nat. Sci., 80
(1970), 3–93.

[14] Á. Szendrei, Idempotent algebras with restrictions on subalgebras. Acta Sci.
Math. (Szeged) 51 (1987), 251–268.

[15] Á. Szendrei, Term minimal algebras. Algebra Universalis, 32 (1994), 439–477.

Department of Mathematics, Vanderbilt University, 1326 Stevenson
Center, Nashville, TN 37240

E-mail address: mmaroti@math.vanderbilt.edu

